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Abstract
The presence of arbuscular mycorrhizal fungi (AMF) in wetlands is widespread. Wetlands are transition ecosystems
between aquatic and terrestrial systems, where shallow water stands or moves over the land surface. The presence of
AMF in wetlands suggests that they are ecologically significant; however, their function is not yet clearly understood.
With the aim of determining the overall magnitude and direction of AMF effect on wetland plants associated with them
in pot assays, we conducted a meta-analysis of data extracted from 48 published studies. The AMF effect on their
wetland hosts was estimated through different plant attributes reported in the studies including nutrient acquisition,
photosynthetic activity, biomass production, and saline stress reduction. As the common metric, we calculated the
standardized unbiased mean difference (Hedges’ d) of wetland plant performance attributes in AMF-inoculated plants
versus non-AMF-inoculated plants. Also, we examined a series of moderator variables regarding symbiont identity and
experimental procedures that could influence the magnitude and direction of an AMF effect. Response patterns indicate
that wetland plants significantly benefit from their association with AMF, even under flooded conditions. The beneficial
AMF effect differed in magnitude depending on the plant attribute selected to estimate it in the published studies. The
nature of these benefits depends on the identity of the host plant, phosphorus addition, and water availability in the soil
where both symbionts develop. Our meta-analysis synthetizes the relationship of AMF with wetland plants in pot assays
and suggests that AMF may be of comparable importance to wetland plants as to terrestrial plants.
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Introduction

Wetlands are ecosystems of transition between aquatic and
terrestrial systems in which the ground water level is usually
at the soil surface level or the soil is covered with shallow
waters (Kent 2001). These ecosystems include different hab-
itats such as marshland, swamps, and seasonal wetlands with
intermittent ponds and streams that last long enough to influ-
ence plant development. They may or may not be subjected to
tides; may present salt water or fresh water; and may be lotic
or lentic systems, permanent or temporary, and consisting of
herbaceous or woody species, or there may be no plants at all
(Kent 2001). Wetlands are among the most important ecosys-
tems on the planet in terms of biodiversity, productivity, and
carbon export to adjacent ecosystems. Wetlands occupy ap-
proximately 6% of the earth’s land surface and are systems in
constant transformation (Moore 2006).

Arbuscular mycorrhizal fungi in wetlands

The arbuscular mycorrhizal symbiosis is formed by the inter\-
ac t ion of fungi f rom Mucoromycota subphylum
Glomeromycotina (as recently proposed by Spatafora et al.
2016) and approximately two thirds of plant species
(Helgason and Fitter 2009). Many species of wetland plants
associate with arbuscular mycorrhizal fungi (AMF), in both
natural (Stenlund and Charvat 1994; Muthukumar et al. 2004;
Fraccaro de Marins et al. 2009) and experimental conditions
(Wolfe et al. 2006; Stevens et al. 2011; Sarkar et al. 2016).
Under natural conditions, AMF have been registered in all
major wetland types such as lowland timber forests (Stevens
et al. 2010), swamps (Torti et al. 1997; Tawaraya et al. 2003),
marshlands and bogs (Bohrer et al. 2004; Radhika and
Rodrigues 2007), fens (Turner et al. 2000), freshwater
marshes (Cornwell et al. 2001; Šraj-Kržič et al. 2006), saltwa-
ter marshes (Brown and Bledsoe 1996; Carvalho et al. 2003),
and mangroves (D’Souza 2016; Gupta et al. 2016). According
to Xu et al.’s (2016) review, AMF show high occurrence and
diversity in wetland habitats and their roles in the composi-
tion, succession, and diversity of wetland plant communities
have been demonstrated in some assays. Aspects such as the
dependence of wetland plants on their AMF companions for
phosphorus (P) acquisition, however, as well as the factors
influencing that and other mycorrhizal benefits obtained by
wetland plants are still poorly understood.

AMF colonize the roots of plants, where they facilitate
mineral nutrient uptake from the soil trough extra-radical my-
celium, in exchange for plant-assimilated carbon (Smith and
Read 2008). The enhancement in nutrient (e.g., P, N, and K;
Karagiannidis et al. 2007) and water intake (Marschner and
Dell 1994; Clark and Zeto 2000; Smith and Read 2008) is in
most cases reflected in an improvement of plant growth, stress
adaptation, and fitness (i.e., the plant’s ability to increase its

numbers proportionately to other species; Pedersen and Sylvia
1996). This improvement can be significant or limited de-
pending on the identity of the symbionts and the environmen-
tal factors in which they develop (Johnson et al. 2006; Cuenca
2015; Rúa et al. 2016), moving the association on a continuum
from mutualistic to parasitic (Johnson et al. 1997).

Symbiont identity

Many plant-fungus combinations form in nature (or even can
be produced experimentally), but not all combinations behave
in the same way (Streitwolf-Engel et al. 1997; van der Heijden
et al. 1998a). There is small or no specificity between plant and
fungus species involved in arbuscular mycorrhizas (Smith and
Read 2008), but usually, there are some AMF combinations
that deliver larger benefit than others to different plant species
(Öpik et al. 2006; Helgason and Fitter 2009; Horton and van der
Heijden 2012). Also, plants preferentially may associate with
AMF species that are complementary in function instead of
functionally redundant (Koide 2000). In addition, the degree
of benefit that a host obtains from the fungi can differ according
to its mycorrhizal dependency (Hetrick 1991; Chandrasekaran
et al. 2014; van der Heijden et al. 1998a).

Related to AMF identity is the origin of the fungus with
which the plant associates. It has been found that indigenous
AMF are better adapted to their native environment conditions
and function better under the homegrown stressors (e.g., sa-
linity, flooding, drought) in comparison with non-native spe-
cies (Lambert and Baker 1980; Weinbaum et al. 1996; Rúa et
al. 2016). Also, inoculant complexity can be a relevant factor
influencing the benefit received by the host plant, because in
complex inoculants (larger number of AMF species), there are
more chances that the plant finds AMF species that comple-
ment its root functions (or finds a very effective isolate) than in
a less complex inoculants (smaller number of AMF species)
(van der Heijden et al. 1998b).

Soil nutritional status

Physical and chemical soil factors (e.g., flooding, salinity, nu-
trient availability) exert beneficial or detrimental effects on
each of the mycorrhiza symbionts and modify the ability to
accomplish their symbiotic function (acquire and deliver nu-
trients and carbon). According to Johnson et al. (1997), soil
nutritional status is the best studied soil factor that influences
the association outcome and likely is the most relevant envi-
ronmental mediator of growth responses to mycorrhizal asso-
ciations. Nitrogen (N) is one of the most limiting nutrients that
regulates productivity in land and aquatic systems, as well as
in wetland ecosystems. Wetlands receive nutrients from the
water flowing over and under the surface from inland areas,
so we can find wetlands that are very poor in nutrients, par-
ticularly in phosphorus (P), while others receive an excessive
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discharge of it because of the contaminants generated by an-
thropogenic activity inland (Reddy and DeLaune 2008).

While P uptake is the primary symbiotic benefit to the
plant, it is recognized that as soil P availability increases, the
growth of some plant species associated with AMF declines.
According to Johnson’s (2010) Exchange Balance Model, the
function of the mycorrhizal symbiosis in terrestrial systems
depends particularly upon available N and P stoichiometry
in the soil. Thus, we can predict that the mutualist benefits
are greater when N availability is large and P availability is
low, because the improved N supply increases the photosyn-
thetic rate of the host plant (Johnson 2010) and low P avail-
ability makes the arbuscular mycorrhiza an important strategy
to acquire the required P. On the other hand, reduced benefits
would be observed under high P availability and poor N avail-
ability because N will limit the photosynthetic rate and the
plant would have enough P for self-supply. Mutualistic func-
tion is more likely in P-limited systems (because AMF can
effectively trade surplus P for plant photosynthate), and com-
mensalism or parasitism is more likely in N-limited systems
(because AMF are unlikely to have surplus N for trade
because they have higher N requirements than their host
plants; Johnson et al. 2015). This issue is still poorly under-
stood in wetland habitats.

Substrate salinity

Coastal wetlands (e.g., mangroves and marshes) are charac-
terized by the influences of both flooding and salinity (up to
70 ppt; Hogarth 2010; Wu et al. 2008) upon their biota. High
salinity concentrations in the soil are detrimental for most
plants (Aggarwal et al. 2012) because of osmotic stress, ion
toxicity, and nutritional imbalance (Tomlinson 1986; Shi et al.
2005; Aggarwal et al. 2012; Asghari 2004; Evelin et al. 2009).
Salinity also has been reported to be detrimental for AMF
(Kim and Weber 1985; Juniper and Abbott 1993; Krishna
2005), and it can delay symbiosis formation (Juniper and
Abbott 2006). Plants that inhabit saline areas, nevertheless,
possess adaptations that enable them to deal with salinity
(e.g., exclusion, excretion, and tolerance to salts in their tis-
sues) (Tomlinson 1986; Hogarth 2010; Parida and Jha 2010).
Another strategy for plants may be the establishment of the
mycorrhizal association, because some AMF also possess
strategies to deal with salinity (e.g., exclusion and tolerance
of salts in their cells) (Hammer et al. 2011; Solaiman et al.
2014; Carvalho et al. 2003), thereby reducing their host’s sa-
line stress (Sinclair et al. 2014; Xie et al. 2014). Reduction of
saline stress may occur through (a) the improvement of plant
mineral nutrition, (b) improvement in antioxidant enzyme ac-
tivity, (c) promotion of production and accumulation of plant
compatible solutes, (d) promotion of preferential absorption of
K+ over Na+, and (e) promotion of physiological changes
such as an increase in photosynthetic efficiency, relative

membrane permeability, and a minor abscisic acid accumula-
tion (Aggarwal et al. 2012; Evelin et al. 2009; Porcel et al.
2012; Chandrasekaran et al. 2014; Solaiman et al. 2014).

Flooding

Flooding has been reported as a detrimental environmental
factor for AMF (Kumar and Ghose 2008; Wang et al. 2011)
because it reduces the quantity of oxygen available in the
substrate (Evans 2003; Moore 2006) which affects AMF de-
velopment (Le Tacon et al. 1983). Oxygen transport in a liquid
medium is very slow because it is controlled by molecular
diffusion. Consequently, the oxygen in a saturated soil dif-
fuses 104 times more slowly than in a non-saturated soil
(Stepniewski and Glinski 1988; Brune et al. 2000). This im-
plies that even low levels of oxygen demand are sufficient to
deplete oxygen completely in the substrate (except for the
surface layers) and diffusion is not fast enough to replenish
the oxygen entirely before it is consumed and depleted again
by the biota (Jackson and Armstrong 1999; Armstrong et al.
1991; Van Breemen and Buurman 2003). Flooding also re-
duces the concentrations of phosphate and nitrate by dilution,
leaching, and microbial denitrification (Evans 2003).

Flooding has been described as one of the main factors
affecting AMF root colonization in wetlands (Ray and
Inouye 2006). According to field research, it previously has
been proposed that AMF are unlikely to reduce stress of their
hosts because of the hypoxia to which they are subjected and
that such fungi may behave as parasites when the soil is satu-
rated for prolonged periods of time, althoughmutualistic func-
tion may be reestablished once the sites become seasonally
dry (D’Souza 2016). This premise can be assessed through
synthetizing pot assay results. If the proposed mechanism is
true, we would expect that plants under flooding treatments in
pot assays will not show benefits from mycorrhizal
associations.

Assessing AMF effect on host plants in pot
experiments

The improvement in nutrient uptake that plants get from their
associated AMF can be reflected in an elevated nutrient con-
centration in plant tissues (Khan 1988; Miller and Sharitz
2000). Also, plants can use water and nutrients to accomplish
their photosynthetic process, so a series of photosynthetic at-
tributes improve when a plant is benefited by AMF (e.g.,
higher photosynthetic pigment concentrations, higher
photosynthetic rate; Dunham et al. 2003; Caravaca et al.
2004; Liu et al. 2014). Resulting from the photosynthetic en-
hancement, mycorrhizal plants usually show increased bio-
mass generation that can be reflected in a large leaf area,
weight, height, etc. (Dhillion 1992; Read 2002; Soti et al.
2014; Lingua et al. 2015). Also, the nutritional enhancement
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enables the plant to elaborate compounds that reduce stress
(e.g., compatible solute accumulations in tissues that reduce
saline stress; Augé 2001; Evelin et al. 2009; Liu et al. 2013;
Hajiboland et al. 2015). Relief of saline stress due to
arbuscular mycorrhiza benefits often is reflected in water re-
lation parameters as heightened water use efficiency (Reuss-
Schmidt et al. 2015) and water content in tissues (Hajiboland
et al. 2015).

As stated above, the effects of AMF on their host plants can
be measured through any of several plant attributes.
Nonetheless, not all mycorrhizal plant attributes always show
significant improvement in comparison with the same attri-
butes from non-inoculated plants (e.g., dry weight of plants
inoculated with non-indigenous inocula [Dhillion 1992],
height [Solaiman and Hirata 1996], electron transport rate in
some arsenic treatments [de Andrade et al. 2015]), and this
could depend on the symbiont species involved, the physico-
chemical substrate characteristics, and even the duration of the
pot assay. One way of synthesizing such variation of results is
through quantitative syntheses or meta-analysis, which allow
attaining generalizations based on previous results from dif-
ferent systems and case studies in the global literature
(Koricheva et al. 2013; Rúa et al. 2016).

Making use of meta-analysis, the aim of this study was to
determine the direction and magnitude of the AMF effect on
wetland plants associated with them in pot experiments and to
explore whether certain experimental factors may influence
the direction and magnitude of those AMF effects. The effect
of AMF on wetland plants was estimated based on the four
plant attributes most frequently evaluated in pot experiments:
mineral nutrient acquisition, photosynthetic activity, saline
stress reduction, and biomass generation, all of which are ex-
pected to improve when arbuscular mycorrhizal symbiosis is
established. As the common metric (or effect size), we calcu-
lated the standardized unbiased mean difference (Hedges’ d),
which can be interpreted as the inverse-variance-weighted dif-
ference between the mean value of a given plant attribute with
versus without AMF colonization in pot experiments, mea-
sured in units of standard deviations. Large differences be-
tween control (AMF absence) and treatment (AMF presence)
effects and low variability generate the largest effect sizes
(e.g., Gurevitch and Hedges 2001). Furthermore, to explore
whether certain experimental conditions and symbiont char-
acteristics and identities determine the relative magnitude of
AMF effects, we included a series of moderator variables,
such as plant and fungus identity (including plant wetland
preference and growth habit), mycorrhizal inoculum origin
and complexity, factors of nutrient addition, water availability
and salinity in the soil, and also the time of the final harvest,
and if an association establishment time is allowed before the
application of other treatments (e.g., salt, fertilization). The
assessment of these moderator variables will help us to reach
a better understanding of the variation in the results of AMF

inoculation assays with wetland plants and may give us an
idea of how the association with AMF can vary in wetlands,
according to seasonal changes and the variation of soil
nutrimental status, water availability, and other physical and
chemical soil properties.

Plants evaluated in each pot study that we included in our
meta-analysis have been reported to associate with AMF in
natural conditions (Driver 1950; Stenlund and Charvat 1994;
Johnson-Green et al. 1995; Reddell et al. 1997; Tsang and
Maun 1999; Miller 2000; Carvalho et al. 2001; Cornwell et
al. 2001; Dunham et al. 2003; Nielsen et al. 2004; Wang et al.
2004; de Battista 2005; Weishampel 2005; Wang and Qiu
2006; Wang et al. 2010; Abdelhalim et al. 2013; Seerangan
and Thangavelu 2014; Soti et al. 2014; Xie et al. 2014; Zhang
et al. 2014; Xu et al. 2016). Although we did not find such
reports for Phragmites japonica and Miscanthus
sacchariflorus, they belong to genera reported as mycotrophic
in natural conditions (Öpik et al. 2006; An et al. 2008).

We hypothesized that inoculated plants would show a
greater enhancement of all attributes in comparison with those
plants that were not inoculated with AMF. Furthermore, we
expected that in the presence of nutrient (N and P) and salt
addition and elevated water availability in the substrate, the
mycorrhiza enhancement of plant attributes would be smaller
than in the absence of nutrient and salt addition and with low
water availability. We expected that the identity of the symbi-
onts determined the magnitude of the benefits in the different
assays. Finally, we expected that a multispecies inoculum
would provide larger benefits than a monospecific one and
that indigenous inoculum (comprising native AMF species)
would provide greater benefits than a non-indigenous one
(comprising non-native AMF species). Finally, we expected
that a development time promoted before the application of
other treatments would yield a stronger association (in com-
parison with the same time application of inoculation and
other treatments), resulting in an elevated response by the
plant and that this response would beweakest in short duration
assays, in comparison with prolonged assays.

Materials and methods

Literature search

An extensive search of literature was performed using Web of
Science, SCOPUS, Google, and Google Scholar with the fol-
lowing sequence of key words: (wetland* OR swamp* OR
marsh* OR bog* OR fen* OR Bshallow water^ OR Bwet
meadow^ OR mangrove* OR rice* OR Baquatic plant^ OR
river* OR lake* OR lacus* OR lagoon* OR estuar* OR del-
ta*) AND (arbusc* ORmycorrhiza* OR BAMF^OR BVAM^)
AND (effect* OR respon* OR grow* OR acqui* OR bio-
mass* OR production*). The literature search was made and
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updated in May 2016–October 2017. The search included ar-
ticles published between 1900 and 2017, which is the timespan
over whichmost online multidisciplinary databases have avail-
able published studies. This search yielded 1354 articles that
were subsequently examined for inclusion in the meta-
analysis.

The first condition for meta-analysis inclusion was that the
plant species used were from wetland habitats, which affilia-
tion was determined in accordance with the wetland indicator
status (WIS) of the USA (Lichvar et al. 2012) or, if no classi-
fication was found, by means of a search for records of habitat
of the species under analysis (this information also was added
to the database as a moderator variable; for a complete list of
moderator variables, see Table 2). If the plant species had
more than one WIS, the strictest was selected for the moder-
ator variable to emphasize the belonging to wetland ecosys-
tems (e.g., an obligate wetland plant is the strictest of all
levels, because it implies that the plant is restricted to wetland
habitat). The second inclusion condition was that a study had
to present a treatment of AMF-inoculated plants (AMF inoc-
ulant added to pots or unsterilized field soil with AMF prop-
agules in it) and a control without inoculation (sterile substrate
without AMF addition). The response variables used to assess
the effects of AMF on their hosts are shown in Table 1. A total
of 48 studies (see Online Resource 1) were included, from
which 543 entries were obtained (multiple data were obtained
from most studies). From each article, operational variables
were recorded and they were classified by the kind of plant’s
attribute response that they estimated (Table 1).

When provided, we also included information regarding
fertility, salinity, and water availability treatments as modera-
tor variables of AMF effects that were assessed within each
study. Although ideally these moderators should be treated as
continuous variables, information provided by the studies was
quite heterogeneous, with either categorical approaches to
these treatments or by the use of different scales for the mod-
erator variable. As a result, we were unable to use a meta-
regression approach, and instead, we assessed these moderator
variables as categorical comparisons of nutrient addition
(phosphorus and nitrogen addition vs no addition), salinity
(application of salt vs non-application), and water saturation
in the soil (different levels of water availability) (Table 2). In
addition, from each article, we gathered information about
symbiont identity, host plant and inoculant characteristics,
and timing of experimental procedures. Because we expected
these aspects to influence the overall AMF effect upon wet-
land hosts, we also included this information as moderator
variables in our analysis (Table 2).

Data analysis

With the numerical outcome of each study, a new standardized
common metric was calculated (i.e., effect size). This com-
mon metric allowed us to estimate overall effects across all
studies and to make comparisons among potential moderator
variables. To calculate the effect size Hedges’ d, each study
had to provide, either within the text or in tables or figures: the
mean values, sample sizes, and standard deviations of any

Table 1 Response variables considered for the evaluation of the AMF effect on their hosts and the category to which theywere assigned (column titles)

Nutrient acquisition Photosynthesis Saline stress reduction Biomass

Phosphorus content and concentrationT,S,R,s,l,g Chlorophyll contentT,a,b K:NaS,R Dry weightT,S,R,s,l

Nitrogen content and concentrationT,S,R,s,l Carotenoid content Soluble sugars contentS,R,l Seed production

Potassium uptake and contentT,S,R,s,l CO2 assimilation rate Starch contentS,R Shoot and leaf number

Transpiration rate Proline contentS,R Bud number

Stomatal conductance Free amino acids contentS,R Leaf area

PSII Water-use efficiency Root length, volume and area

NPQ Water contentS,R,l Height

ETR Carbon content or concentrationT,S,R

Internal CO2 concentration Diameter at ground level

Relative growth rate

PSII, actual quantum yield of photosystem II; NPQ, non-photochemical quenching; ETR, electron transport rate
T Total content
S In shoot
R In root
s In stem
l In leaf
g In grain
a Chlorophyll a
b Chlorophyll b

Mycorrhiza (2018) 28:477–493 481



plant performance response variable from each of the two
contrasting effect categories: the control (without AMF inoc-
ulation) and the treatment (with AMF inoculation) (see
Gurevitch and Hedges 2001 for detailed calculations and
equations). When values only were provided in figures, we
obtained the exact data using the software Datathief II (B.
Tummers, http://www.datathief.org). Positive Hedges’ d
values imply positive AMF effects on the performance of
their host plant, whereas negative Hedges’ d values imply
the opposite, a negative effect of arbuscular mycorrhizal
inoculation on host performance.

We used mixed-effects models with fixed (see moderators
in Table 2) and random effects to account for differences
across studies, assuming they do not share a common mean
effect, but recognizing that there is random variation among
studies in addition to within-study sampling variation
(Borenstein et al. 2009). Because most studies provided more
than one output measure of host response to the presence or

absence of AMF, we performed hierarchical mixed-effects
meta-analyses (Rossetti et al. 2017). Thesemodels incorporate
the hierarchical structure of the data that results from including
multiple observations (i.e., effect sizes) from the same study
which violates the assumption that effect sizes are indepen-
dent. Thus, we included a publication-level random effect as a
nesting factor to consider this dependency of multiple out-
comes within a study (Tuck et al. 2014; Rossetti et al. 2017).

Heterogeneity of effect sizes was assessed with Q statistics,
which are weighted sums of squares tested against a chi-square
distribution (Borenstein et al. 2009). Specifically, we examined
the p values of QTotal, which describe the overall heterogeneity
among all effect sizes included in the review, without any cate-
gorization, and also the p values of QM statistics that describe the
variation in effect sizes that can be attributed to differences
among categories of each predictor variable (i.e., fixed effects)
in the model (Table 2). Effect sizes were considered significantly
different from zero if their bias-corrected bootstrap at 95%
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Table 2 Moderator variables selected for the evaluation of the AMF effect on their hosts. Next to each moderator variable name, in parenthesis, the
number of articles supporting that variable is shown

Moderator variable Definition

Plant identity (48) Taxonomic identity of the plant at species level. Species nomenclatures were updated according to ITIS
(https://www.itis.gov/)

Plant growth habit (48) Plant growth habit according to United States Department of Agriculture (https://www.plants.usda.gov): tree, forb,
or graminoid

Wetland indicator status (41) Plant species preference to wetland habitat. OBL (obligate = almost always occur in wetlands, 99% occurrence in
wetlands), FACW (facultative wetland = usually occur in wetlands, but may occur in non-wetlands, 67–99%
occurrence in wetlands), FAC (facultative = occur in wetlands and non-wetlands, 34–66% occurrence in
wetlands), FACU (facultative upland = usually occur in non-wetlands, but may occur in wetlands, 1–33%
occurrence in wetlands), UPL (upland = almost never occur in wetlands, 1% occurrence in wetlands). We did not
obtain UPL data

Inoculum origin (48) Native (inocula extracted from the natural habitat where study host plant develops). In this revision, in all analyzed
articles, this kind of inocula also corresponded to Bhome^ kind of inocula (inocula extracted from study host plant
rhizosphere), non-native (inocula that have not developed in the native ecosystem of the study host plant). This
could be extracted from a natural habitat or be a stock inocula produced by research laboratories or also a
commercial inocula, produced by specialized companies

Inoculum complexity (48) Multiple or single AMF species inocula

AMF identity (22) Taxonomic identity of the AMF at species level. Species nomenclatures were updated according to index fungorum
(http://www.indexfungorum.org/names/names.asp). Taxonomic levels higher than species were registered as
reported in the articles. This moderator variable was only analyzed for the monospecific inocula, but in the Online
Resources, complete database is provided and there are listed also AMF species present in the multispecific
inoculum

P addition (34) If P was added to the soil or not

N addition (38) If N was added to the soil or not

Salinity (47) If salinity treatments were applied or not: salt applied or no salt applied

Water content in the soil (37) Refers to how much water is contented in the soil pores (measured as soil saturation percentage): saturated (100%),
field capacity (70–90%), below field capacity (< 70%), dry (< 25%), field capacity to dry (change in water regime
from field capacity to dry during experiment = watering decrease), dry to field capacity (change in water regime
from dry to field capacity during experiment = watering increase)

Mycorrhiza development time
extended (48)

If an association establishment period was allowed or not, before other treatments (e.g., fertility, salinity, watering)
were applied: development time extended (association establishment period was allowed, before other treatments
were applied), no development time extended (mycorrhizal inoculation and other treatments were applied at the
same time) or single treatment (mycorrhizal inoculation was the only treatment applied)

Final harvest (46) Number of days between the planting and the final harvest of the plants

http://www.datathief.org
https://www.itis.gov
https://www.plants.usda.gov
http://www.indexfungorum.org/names/names.asp


confidence intervals (CI) did not include zero (Borenstein et al.
2009). All analyses were conducted in the R environment using
the metafor package (Viechtbauer 2010; R Core Team 2015).

An intrinsic problem in any systematic quantitative review
is the possibility of publication bias, i.e., studies showing sig-
nificant results have a higher probability of being published.
Evidence of potential publication bias in our dataset was ex-
plored with Kendall’s rank correlations of effect size and stan-
dard error across the studies (Begg 1994). Significant p values
indicate potential publication bias, whereby studies with small
sample size (large standard errors) are only published if they
show large effect sizes. Also, we calculated Rosenthal’s fail-
safe number, which estimates the number of non-significant,
unpublished studies that need to be added to a meta-analysis to
change its overall results from significant to non-significant. If
the fail-safe number is larger than 5n + 10, where n is the
original number of effects included in the meta-analysis
(Rothstein et al. 2005), then the overall results are robust,
regardless of the presence of publication bias.

Results

Overview

The overall effect of AMF on wetland plants was positive and
significantly different from zero in accordance with the 95% CI
(df = 542; Hedges’ d= 0.4556; 95% BC CI, 0.2634 to 0.6479;
Fig. 1). This result implies that the presence of AMF, on average,
increases the overall performance of wetland plants in pot exper-
iments. There was, however, significant heterogeneity among
effect sizes across the studies (QTotal = 2220.71; df = 542; p <
0.0001), implying differential responses of wetland plants to

AMF inoculation. Therefore, we subsequently assessed the rela-
tive effects of the kind of plant attribute with which the AMF
effect was estimated, on the direction and magnitude of this
effect. After that, we assessed the relative effects of certain mod-
erator variables of interest.

The rank correlation test between effect sizes and standard
error was significant (Kendall’s tau = 0.144; p < 0.01), imply-
ing the potential of publication bias in our database. That is,
the studies we incorporated into our meta-analysis may be a
biased sample of the entire research on this subject and might
represent only research that had significant results and thereby
was likely to be published. Nevertheless, the calculated fail-
safe number (74006) was much larger than 5n + 10 (5 × 543 +
10 = 2725), which supports that our results are robust and
conclusive, despite the presence of publication bias in the
dataset (Rothstein et al. 2005).

The effect of AMF reflected in different kinds of plant
attributes

Of the data included in the meta-analysis, 47.2% originates from
biomass production attributes, 28% from nutrient acquisition,
12.5% from saline stress reduction, and 12.3% from photosyn-
thetic activity attributes. The effect of the AMF on their hosts
differs depending on the kind of plant attribute used to evaluate it.
Differences were observed among the different kinds of plant
attributes analyzed in the present study (QM=40.16; df = 3; p
< 0.0001). The variables that showed the greatest effects of AMF
on their hosts were those grouped in nutrient acquisition, follow-
ed by the photosynthetic activity, saline stress reduction, and
finally biomass production attributes (Fig. 1).

Fig. 1 Weighted mean effect sizes and 95% bias-corrected confidence
intervals for the overall effect (black diamond, N = 543) and weighted
mean effect sizes of the four different plant attributes used to estimate
the overall effect of the AMF on their hosts. Sample sizes for each
category are shown in parentheses. The size of each dot representing each

mean effect size is proportional to its weight or contribution to the overall
mean calculation. Dotted line shows Hedges’ d = 0. When confidence
intervals overlap zero, the effect sizes are not significantly different from
zero. Non-overlapping confidence intervals among plant attributes’ effect
sizes imply significant differences among them
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Host plant characteristics

A total of 32 plant species are included in this meta-analysis. Of
the published data included, 36% originates from experiments
with species of agricultural interest (27.6% of rice, Oryza sativa,
and 8.28% of sorghum, Sorghum bicolor) and the remaining
from wild species: 5.3% of the data corresponds to tree species,
21.6% to herbaceous plants, and 73.1% to graminoid plants.
With respect to the preference of the plant species used in the
experiments for the wetland habitat (represented by Wetland
Indicator Status), 38.9% were cataloged as obligate, 16.4% as
facultative wetland plants, 6.1% as facultative, and 13.8% as
facultative upland, and for the remaining percentage, no classifi-
cation was found, or it did not apply because the plant was
identified only at genus level.

Significant differences were observed among the plant re-
sponse magnitudes to AMF inoculation according to the host
taxonomic identity (QM= 73.0764; df = 31; p < 0.0001). This
means that certain plant species had strong and positive perfor-
mance responses when inoculated with AMF (e.g., Leersia
hexandra, Strophostyles helvola, Oryza sativa), while others
did not show significant changes (e.g., Tripolium, Panicum,
Sonneratia apetala) (Fig. 2). The complete list of hosts species
is given in Online Resource 2. Host preference for wetland hab-
itat also determines the response of the species to inoculation
with AMF (QM= 14.0503; df = 3; p = 0.0028; Fig. 2), with the
greatest effect of the fungi being observed in the facultative wet-
land species, followed by the facultative upland and, to a lesser
degree, the obligate species. In contrast, the host plants with
facultative status showed no significant effects. Regarding the
host growth habit, graminoid plants showed a significant effect
ofAMF, but there are no significant differences between the three

groups (QM = 5; df = 2; p = 0.0821; figure provided in
Online Resource 3).

Origin and complexity of AMF inoculant and AMF
identity

Of the data included in the meta-analysis, 52.7% originates
from experiments in which the inoculation was carried out
with a consortium of AMF species and the remaining percent-
age with only one species (monospecific inoculum). A total of
44% of the data were obtained from native inoculant and the
remaining from non-native inoculant. To learn whether the
AMF taxonomic identity influences their effect on the plants
associated with them, we analyzed the monospecific inocu-
lant. Results indicate that plants did not show different perfor-
mance responses depending on the identity of their associated
fungi (QM = 12.65; df = 7;P = 0.0812) (Fig. 3). No differences
were observed in the magnitude of the effects with respect to
the complexity of the inoculum, i.e., using one species versus
a consortium of AMF species to inoculate the plants (QM =
1.89; df = 1; p = 0.1628). Regardless of the complexity of the
inoculant, the overall effect on hosts was positive and signif-
icant (Fig. 4). There were no differences in relation to the
origin of the inoculum (QM = 1.77, df = 1, p = 0.1828); regard-
less of the origin of the inoculant, the overall effect on the host
is positive and significant (Fig. 4).

Nutrient addition

More than a half of the information corresponded to experiments
that included nutrient addition to the substrate (61.1%withN and
54.3% with P). Significant differences were observed in the

Fig. 2 Weighted mean effect sizes and 95% bias-corrected confidence
intervals of the different included hosts and their wetland indicator status
(WIS; obligate, facultative wetland, facultative, and facultative upland).
Sample sizes for each category are shown in parentheses. Figure only
shows host plant species with sample sizes > 10. The size of each dot
representing each mean effect size is proportional to its weight or

contribution to the overall mean calculation. Dotted line shows Hedges’
d = 0. When confidence intervals overlap zero, the effect sizes are not
significantly different from zero. Non-overlapping confidence intervals
among host plants’ and WIS’ effect sizes imply significant differences
among them
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effects of AMF depending on whether P was added or not in the
experiments (QM= 22.24; df = 1; p< 0.0001). When P was not
added, the effect of the AMF on their hosts was much greater
than in experiments that added P (Fig. 5), but regardless of the
condition (addition or non-addition), the overall effect on the host
is positive and significant. A similar situation can be observed for
the addition of N: when it is not added, the effects of the AMF on
the performance of the plant tend to be greater than with the
addition of N, but these differences were not significant (QM=
0.5186; df = 1; p= 0.4714; Fig. 5).

Water availability and salinity in the substrate

From the analyzed data, 18.9% of the data corresponded to salt
addition treatments and 78.5% to absence of salt addition.
Regarding water availability in the soil, 11% corresponded to
flood treatments, 36.2% to field capacity, 35.7% to irrigation

below field capacity, 2.3% to a dry treatment, and a total of 4%
to change of field capacity to dry and from dry to field capacity.

Regarding salinity treatments, we found that AMF, either
with or without salt application to pots, exert positive and
significant effects on their hosts. No significant differences
were observed between salt application or non-application
conditions (QM = 0.1428; df = 1; p = 0.7055; Fig. 6). The
levels of water availability in the substrate differentially influ-
enced the effect of AMF on their plant hosts (QM = 57.35;
df = 5; p < 0.0001; Fig. 6). The treatments that positively and
significantly influenced the effect of AMF on their hosts were
flooding (100% saturation), irrigation below field capacity
(69–25% saturation), and the change of field capacity to dry
(change of 70–90% to < 25% saturation). The highest mean
AMF effect on their hosts was related to below field capacity
water availability, followed by the treatments of Bchange from
field capacity to dry^ and finally saturated (Fig. 6).

Fig. 3 Weighted mean effect sizes and 95% bias-corrected confidence
intervals of different AMF species used in monospecific inoculum.
Sample sizes for each category are shown in parentheses. Figure only
shows AMF species with sample sizes > 10. The size of each dot

representing each mean effect size is proportional to its weight or contri-
bution to the overall mean calculation. Dotted line shows Hedges’ d = 0.
When confidence intervals overlap zero, the effect sizes are not signifi-
cantly different from zero

Fig. 4 Weighted mean effect
sizes and 95% bias-corrected
confidence intervals of different
inoculum origins (native and non-
native) and complexities
(multiple or single species).
Sample sizes for each category
are shown in parentheses. The
size of each dot representing each
mean effect size is proportional to
its weight or contribution to the
overall mean calculation. Dotted
line shows Hedges’ d = 0. When
confidence intervals overlap zero,
the effect sizes are not
significantly different from zero
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Mycorrhiza development time extended and time
of final harvest

A total of 61.9% of the data originated from studies that in-
cluded additional treatments besides inoculation with AMF,
and the remainder originated from studies where AMF inoc-
ulation was the only treatment applied. 28.4% of the data were
obtained from experiments in which an inoculation time was
provided prior to the application of other treatments and
33.5% from experiments where the inoculation was applied
at the same time as the other treatments. Duration of each of
the different experiments registered in the literature differed
considerably, ranging from 7 to 504 days (109.1 ± 22.43),

with 84 days being the most recurrent experiment duration
used in 6 articles of the total 48 analyzed.

Regarding the inclusion of an inoculation period prior to
the application of the other treatments (e.g., fertility, flooding,
or salinity), significant effects were found only for AMF in-
oculation as the single treatment applied (Fig. 5), but the ef-
fects were not significantly different between the three levels
of this category (QM = 1.29; df = 2; p = 0.5237) (Fig. 5). The
results of the meta-regression with log-transformed time of
final harvest as the independent variable indicated that no
significant relationship exists between the harvest time and
the effect of AMF on their wetland hosts (QM = 0.0265; df =
1; p = 0.9706; Online Resource 3).

Fig. 5 Weighted mean effect sizes and 95% bias-corrected confidence
intervals of different fertilization treatments (P and N added and not
added) and promotion of inoculation period (promoted, not promoted,
or single treatment). Sample sizes for each category are shown in
parentheses. The size of each dot representing each mean effect size is

proportional to its weight or contribution to the overall mean calculation.
Dotted line shows Hedges’ d = 0. When confidence intervals overlap
zero, the effect sizes are not significantly different from zero. Similarly,
non-overlapping confidence intervals among pot experiments
manipulating P′ effect sizes imply significant differences among them

Fig. 6 Weighted mean effect sizes and 95% bias-corrected confidence
intervals of different salinity treatments (salt added and not added) and
water availability in the substrate resulting from irrigation treatments (dry,
saturated, field capacity, below field capacity, dry to field capacity, and
field capacity to dry). Sample sizes for each category are shown in
parentheses. The size of each dot representing each mean effect size is

proportional to its weight or contribution to the overall mean calculation.
Dotted line shows Hedges’ d = 0. When confidence intervals overlap
zero, the effect sizes are not significantly different from zero. Similarly,
non-overlapping confidence intervals among pot experiments
manipulating salinity’s and irrigation treatments’ effect sizes imply
significant differences among them

486 Mycorrhiza (2018) 28:477–493



Discussion

Wetland habitat is unlike any land habitat, given that the or-
ganisms that develop there are exposed to specific environ-
mental problems deriving from water saturation of the sub-
strate (Moore 2006). This saturation may be permanent or
periodic, with the soil full of water in the wet season but dry
in the dry season (Tiner 1991). Fluctuation in water levels
implies that wetland organisms must be able to deal with both
dry and wet conditions (Moore 2006). The presence of spores,
extra-radical mycelium, and root colonization byAMF in wet-
land plants has been reported on numerous occasions
(Ipsilantis and Sylvia 2007; Radhika and Rodrigues 2007;
Harner et al. 2011; Wang et al. 2015). The results of our
meta-analysis of pot assays suggest that AMF are not only
capable of surviving in wetland conditions, but they also are
functional and beneficial symbionts for the plants that estab-
lish in these ecosystems.

According to this meta-analysis, the benefit delivered by
AMF to their wetland hosts can be observed in tissue nutrient
content, biomass production, photosynthesis, and saline stress
relief attributes, and it reflects differentially depending on the
kind of attribute selected to evaluate it. According to the ana-
lyzed data, nutrient content could be the most reliable attribute
for evaluating the response of plants to mycorrhizal inocula-
tion; ultimately, nutrient acquisition is the core benefit that
plants receive from associating with AMF (Smith and Read
2008). In experiment chambers, it has been observed that
AMF can deliver up to 80% of P and 42% of N in the plant
(Marschner and Dell 1994; Cuenca 2015). According to our
results, the overall degree of benefit provided by AMF to their
wetland hosts in pot assays depends on the identity of the host
plant, the P addition, and water availability in the soil where
both symbionts develop.

Identity of the symbionts

As it has been registered for upland plants (Jun and Allen
1991), the identity of the wetland host plant in pot studies
determines the degree of benefit that can be observed in the
inoculated plants. Different plant and AMF species differ in
their capacity to acquire and deliver nutrients and carbon to
their symbiotic partner (Johnson 2010). This, along with as-
pects like root structure (e.g., suberin molecules that impede
fungal colonization or root volume occupied by aerenchyma
that could reduce cortex spaces for AMF establishment but
which on the other hand, under flooding could deliver more
oxygen to the rhizosphere) or mycorrhizal dependency, makes
plant response to AMF inoculation be host identity dependent.
This differential effect apparently is not dependent on plant
growth habit but is dependent on their preference for wetland
habitat.

Wetland plants are classified according to their frequency
of occurrence in wetland conditions, which has been reported
to be influenced by soil redox potential and the ability of these
species to maintain an oxygenated root environment (Reddy
and DeLaune 2008). Regarding the preference of different
plant species for the wetland environment, among the indica-
tors influencing the AMF effect, the highest significant effect
was registered for the facultative wetland species and the fac-
ultative upland, while the lowest was for the obligate species.
This could suggest a difference regarding the mycorrhizal de-
pendency or precisely the flood conditions they must with-
stand and under which they are found with greatest frequency.
For example, if facultative species (which receive the greatest
positive effect of AMF) tolerate flooding to a lesser degree
than a wetland obligate plant, these are found less frequently
in permanently flooded soils, which also are more adverse for
the AMF than soils flooded with less frequency. These rela-
tionships require further examination because it has been not-
ed that the categories of the wetland indicator status fail in
their correlation with the taxonomy of the plants (Lichvar et
al. 2012). Nevertheless, these categories which are useful for
multiple purposes (such as delimitation, evaluation, mitiga-
tion, and restoration of habitats), besides helping us to delimit
this study, allow us to emphasize that the plant species restrict-
ed to the wetland environment (obligate wetland) are benefit-
ted consistently by establishing the arbuscular mycorrhizal
association. This highlights the potential importance of the
mycorrhizal association for plants establishing in the strictest
wetlands.

As different plant species differ in their capacity to acquire
and deliver their symbiotic fee (Johnson 2010) AMF also
differ in that capacity and in their competitive ability for col-
onizing roots (Jansa et al. 2008). Thus, the effect that plants
receive from AMF can be fungus identity dependent.
Unexpectedly, AMF identity of the monospecific inoculant
did not show a significant influence on the magnitude of the
mycorrhiza effect and neither were differences in the effect
observed depending on the origin of the inoculant. This also
was contrary to what was expected, considering that different
species of plants and AMF have adapted to their environment
and are thus optimized for working together (Rúa et al. 2016).
This lack of taxonomic identity and origin influence in our
meta-analysis may indicate the plasticity of the fungi to adapt
to different environmental conditions. Nonetheless, we must
keep in mind that the AMF identity moderator variable only
accounted for 48% of the total data information (monospecific
inoculant), so it is possible that this result could change with a
greater number of observations or under field conditions.

Regarding functional complementarity, there exists a great-
er possibility of complementing root functions or having a
wider capacity for resource exploitation with a consortium
of AMF species, rather than with only one species (Koide
2000). The results of the present meta-analysis, however,
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show that there is no difference in the AMF effect, whether it
is generated by one species or by a consortium of AMF. It is
feasible that plants have not shown the differential benefit of
having more than one AMF species (with different survival
and nutrient and water acquisition/delivery strategies) in their
rhizosphere, because most analyzed pot studies (except water
availability levels inMiller and Sharitz 2000) maintained their
treatments at relatively constant levels from the beginning to
the end of the assay (e.g., salinity or flooding). Thus, there
likely were no different niches to occupy in the restricted pot
environment. This does not mean that inoculum complexity is
not important in natural wetland systems; it probably is the
opposite situation because wetlands are very dynamic ecosys-
tems (Moore 2006). Associating with fungi that possess dif-
ferent hypoxia, drought, or salinity tolerance capacities is like-
ly the best strategy to maintain the benefits of the association
functioning in seasonally fluctuating soil conditions (Abbott
and Gazey 1994; Pringle and Bever 2002), representing a
strategy for buffering against change (Jansa et al. 2008). As
will be discussed further, AMF are capable of tolerating and
delivering benefits to their wetland host under varying stress-
ful soil conditions that are common in wetland ecosystems.

Pot assays that aim to find optimal AMF for wetland refor-
estation and remediation should take this experimental issue
into account. Our results show that in pot assays, the overall
effects of AMF on their wetland host do not depend on the
identity, origin, or complexity of the inoculant, but that could
be because of the controlled conditions of pot experiments that
do not necessarily mimic the conditions under which the sym-
bionts develop in nature (Allen 1996) and do not allow us to
observe a differential effect regarding the origin or the com-
plexity of the mycorrhizal inoculum.

Nutrient addition

Growth depression of hosts has been reported as result of high
P in the substrate, which may arise from the demand for car-
bon compounds exceeding nutrient delivery by AMF (Janos
2007). Plants growing in wetlands are considered efficient
with respect to their use of nutrients, given that these are not
very abundant in a natural form (e.g., Small 1972;
Rejmánková 2005). Our results show, however, that even
when wetland plants receive P fertilization, they continue re-
ceiving significant benefits from their associated AMF.
Nevertheless, as with land plants, the benefit is greatest with-
out the addition of P. This result, although requiring detailed
examination (e.g., mycorrhizal dependency assays), high-
lights the relevance of arbuscular mycorrhizas for wetland
plants. In the case of N, contrary to expectation, the addition
(if sufficient N is available, photosynthesis is not restricted nor
is the carbon delivery to AMF; Johnson 2010; Johnson et al.
2015) or non-addition of this element (low N could restrict
mycorrhizal benefits; Johnson 2010; Johnson et al. 2015) does

not appear to determine its effect. In other words, the effect is
positive, regardless of the addition of N. Nitrogen addition
effects could be obscured by the driving force of P, the main
benefit of AM symbiosis, because despite added N, P avail-
ability would determine if symbiosis tended to be parasitic
(high P) or mutualistic (low P), or if N was not added, P
availability would determine if the symbiosis tended to be
commensal (high P) or a limited mutualism (low P). Our mod-
erator variable addition versus non-addition of N and P is not
sensitive enough to determine with certainty if the lack of N
influence is a consequence of P and N stoichiometry.

Water availability and salinity in the substrate

Water saturation of the substrate is the most determinant force
for biological communities inhabiting wetlands (Cowardin et
al. 1979), and arbuscular mycorrhizal association provides no
exception. Regarding the water availability levels examined in
the present study, the largest effect of AMF on their hosts was
observed in below field capacity water availability. Even for
the 100% saturation (equivalent to flooding), however, signif-
icant benefits were found. In the same way that plants
established in wetlands have adapted to survive under flooded
conditions, AMF must possess strategies that allow them to
establish and develop in these environments. In plant species,
such adaptations include the use of two kind of strategies: (i)
anatomical: the risk of suffocation is minimized by internal
routes of impediment-free transport consisting of a continuous
plant tissue (aerenchyma) which contains enlarged spaces of
gas (Evans 2003); (ii) metabolic: under severe conditions of
oxygen deficiency, some plants are capable of respiration
through anaerobic fermentation (Evans 2003; Reddy and
DeLaune 2008).

In the case of AMF, they might be able to use three types of
adaptations. First, they may have low oxygen requirements
(Helgason and Fitter 2009; Le Tacon et al. 1983). Second,
they may have a capacity to remain quiescent in the absence
of oxygen and to recover their activity once the environment is
oxygenated. Germination and hyphal growth are affected by
flooding, but these effects may be reversible (Le Tacon et al.
1983). In this sense, the fluctuation of flooding in some wet-
lands could also be crucial for the survival of susceptible AMF
species in such environments. If so, the spores with greatest
probability of germinating and colonizing plants are those that
are produced in the low tide seasons when there is the most
oxygen in the substrate. Third, AMF may be able to cluster in
the oxygenated rhizosphere of their hosts. The presence of
aerenchyma in plant tissues has a secondary effect that in-
volves leakage of oxygen from roots into the surrounding
substrate, a process called Boxygen radial loss^ (Armstrong
et al. 1991; Brune et al. 2000). Oxygen radial loss can become
the main source of oxygen supply in flooded soils
(Stepniewski and Glinski 1988). The leaked oxygen from
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the roots of wetland plants allows aerobic organisms to pros-
per in this particular environment, at least temporarily, by
providing them with an oxygenated space in the rhizosphere
(Brune et al. 2000; Evans 2003; Lai et al. 2012). It has been
proposed that the radial loss of oxygen also favors the devel-
opment of AMF around roots (Brown and Bledsoe 1996). In
addition to the three types of adaptations listed, one aspect that
has been poorly explored is the acquisition of oxygen directly
from the aerenchyma of hosts. The presence of structures
pertaining to AMF has been reported in the aerenchyma of
salt marsh plants (Brown and Bledsoe 1996).

Stevens et al. (2011) support that flooding of the soil can
inhibit the development of AMF in some emergent wetland
species under certain conditions, but this is not always the case
and arbuscular mycorrhizal associations can establish in
flooded soils. The results of our meta-analysis support to that
conclusion and allow us to assert that, in general, AMF deliver
benefits to their hosts even under flooded conditions. Thus,
although there may be species of AMF that tend to act as
parasites during flooding, they generally function as mutual-
ists. The premise that AMF act as parasites in wetlands arises
from the inverse relationship between root colonization and
spore density in field soils with the level or permanence of
flooding (Anderson et al. 1984; D’Souza 2016). It is important
to emphasize, however, that a low level of root colonization
does not necessarily imply low functionality, and similarly for
AMF spore density (Mosse 1981). Most mutualisms are vul-
nerable to cheating by some of the symbionts, and some sym-
bionts will be ineffective in carrying out their function
(Helgason and Fitter 2009) which may lead to parasitism on
some occasions, but the experimental tests that have been
carried out to date show that the association with AMF is of
benefit to wetland plants under different conditions of
flooding, P fertility, and salinity.

Coastal wetlands are higly variable systems not only
with respect to oxygen availability, but also to salinity.
Unfortunately, we were not able to obtain enough suitable quan-
titative data on substrate salinity to examine its influence on the
overall effect of AMF on their hosts. Different studies that ap-
plied salt treatments were conducted under dissimilar experimen-
tal conditions, making salinity a very heterogeneous variable to
analyze without a larger number of observations. Nonetheless,
our results show that AMF overall effect is positive and signifi-
cant, either under non-saline conditions or under saline condi-
tions. On the other hand, we found that AMF do significantly
alleviate saline stress in their wetland hosts, as has been found for
upland plants (Chandrasekaran et al. 2014). Little is known of the
combined effect of this variable with flooding because its rela-
tionship is complex, depending on the levels of both variables
and on texture and filtration in the substrate (Lugo and Snedaker
1974; Odum et al. 1985; Feller and Sitnik 1996; Pennings et al.
2005; Moreno-Casasola et al. 2006), but it likely is a relevant
factor affecting the symbiosis, and it needs further exploration.

Timing of experimental procedures

Regarding the timing of experimental procedures, contrary to
expectations, an extended mycorrhiza development time and
extended time of the final harvest did not show significant
influences on the overall effect of AMF upon wetland hosts
in pot assays. Nevertheless, we did observe that positive ef-
fects were consistently obtained when inoculation was the
only treatment. This suggests that in the pot assays without
further pot environment variability, arbuscular mycorrhizal
association is free of impediments to functioning, but when
other treatments are applied, the effect that AMF exert on their
hosts can vary and even diminish. Our results suggest that in
pot studies, it is irrelevant if association already was
established or if it must establish under complex environmen-
tal conditions. Ultimately, in natural conditions, the mycorrhi-
zal association must establish under many soil conditions,
stressful or not for the fungi (Brundrett 1991). This result also
suggests that allowing a mycorrhiza development time before
application of experimental treatments is unnecessary, which
could help to shorten experiments.

Conclusion

This meta-analysis not only synthesizes the relationship of
AMF with plant species found in wetlands in pot assays, but
also highlights the importance of arbuscular mycorrhizas for
the plants that establish in these ecosystems. AMF are able to
benefit their hosts under diverse conditions of water availabil-
ity, nitrogen and phosphorus fertility, and salinity. They deliv-
er improvements in nutrient acquisition, photosynthetic activ-
ity, biomass generation, and saline stress reduction with the
magnitude of effects depending upon host identity as well as
phosphorus addition and water availability (the defining wet-
land condition). Previously, it had been established that AMF
represent an integral part of wetland ecosystems (Khan 2004),
and now, we know by synthesizing the results of the pot stud-
ies carried out to date that AMF actually may be of compara-
ble importance to wetland plants as they are to terrestrial
plants.
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